145 research outputs found

    Robust offset-free constrained Model Predictive Control with Long Short-Term Memory Networks -- Extended version

    Full text link
    This paper develops a control scheme, based on the use of Long Short-Term Memory neural network models and Nonlinear Model Predictive Control, which guarantees recursive feasibility with slow time variant set-points and disturbances, input and output constraints and unmeasurable state. Moreover, if the set-point and the disturbance are asymptotically constant, robust asymptotic stability and offset-free tracking are guaranteed. Offset-free tracking is obtained by augmenting the model with a disturbance, to be estimated together with the states of the Long Short-Term Memory network model by a properly designed observer. Satisfaction of the output constraints in presence of observer estimation error, time varying set-points and disturbances is obtained using a constraint tightening approach.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    MPC for Robot Manipulators with Integral Sliding Modes Generation

    Get PDF
    This paper deals with the design of a robust hierarchical multiloop control scheme to solve motion control problems for robot manipulators. The key elements of the proposed control approach are the inverse dynamics-based feedback linearized robotic multi-input-multi-output (MIMO) system and the combination of a model predictive control (MPC) module with an integral sliding mode (ISM) controller. The ISM internal control loop has the role to compensate the matched uncertainties due to unmodeled dynamics, which are not rejected by the inverse dynamics approach. The external loop is closed relying on the MPC, which guarantees an optimal evolution of the controlled system while fulfiling state and input constraints. The motivation for using ISM, apart from its property of providing robustness to the scheme with respect to a wide class of uncertainties, is also given by its capability of enforcing sliding modes of the controlled system since the initial time instant, allowing one to solve the MPC optimization problem relying on a set of linearized decoupled single-input-single-output (SISO) systems that are not affected by uncertain terms. The proposal has been verified and validated in simulation, relying on a model of a COMAU Smart3-S2 industrial robot manipulator, identified on the basis of real data

    Model-based event-triggered robust MPC/ISM

    Get PDF
    A model-based event-triggered control scheme based on the combined use of Model Predictive Control (MPC) and Integral Sliding Mode (ISM) control is proposed in this paper. The aim is to reduce to a minimum the number of transmissions of the plant state over the network, in order to alleviate delays and packet loss induced by the network overload, while guaranteeing robust stability and constraints fulfillment. The presented control scheme includes a model-based controller and a smart sensor, both containing a copy of the nominal model of the plant. The sensor intelligence is provided by a triggering condition, which enables to determine when it is necessary to transmit the measured state and to update the nominal model. The controller includes an ISM component, which has the role of compensating the uncertainties, and a MPC term which optimizes the system evolution. The control system performance are assessed in simulation relying on an illustrative mechanical example

    A robust MPC/ISM hierarchical multi-loop control scheme for robot manipulators

    Get PDF
    In this paper, we propose a robust hierarchical multi-loop control scheme aimed at solving motion control problems for robot manipulators. The kernel of the proposed control scheme is the inverse dynamics-based feedback linearized robotic MIMO system. A first loop is closed relying on an Integral Sliding Mode (ISM) controller, so that matched disturbances and uncertain terms due to unmodelled dynamics, which are not rejected by the inverse dynamics approach, are suitably compensated. An external loop based on Model Predictive Control (MPC) optimizes the evolution of the controlled system in the respect of state and input constraints. The motivation for using ISM, apart from its property of providing robustness to the scheme in front of a significant class of uncertainties, is also given by its capability of enforcing sliding modes of the controlled system since the initial time instant, which is a clear advantage in the considered case, allowing one to solve the model predictive control optimization problem relying on a set of linearized decoupled SISO systems which are not affected by uncertain terms. As a consequence, a standard MPC can be used and the resulting control scheme is characterized by a low computational load with respect to conventional nonlinear robust solutions. The verification and the validation of our proposal have been carried out with satisfactory results in simulation, relying on a model of an industrial robot manipulator with injected noise, to better emulate a realistic set up. Both the model and the noise have been identified on the basis of real data. ©2013 IEEE

    Asynchronous networked MPC with ISM for uncertain nonlinear systems

    Get PDF
    A model-based event-triggered control scheme for nonlinear constrained continuous-time uncertain systems in networked configuration is presented in this paper. It is based on the combined use of Model Predictive Control (MPC) and Integral Sliding Mode (ISM) control, and it is oriented to reduce the packets transmission over the network both in the direct path and in the feedback path, in order to avoid network congestion. The key elements of the proposed control scheme are the ISM local control law, the MPC remote controller, a smart sensor and a smart actuator, both containing a copy of the nominal model of the plant. The role of the ISM control law is to compensate matched uncertainties, without amplifying the unmatched ones. The MPC controller with tightened constraints generates the control component oriented to comply with state and control requirements, and is asynchronous since the underlying constrained optimization problem is solved only when a triggering event occurs. In the paper, the robustness properties of the controlled system are theoretically analyzed, proving the regional input-tostate practical stability of the overall control scheme

    Hierarchical Model Predictive/Sliding Mode control of nonlinear constrained uncertain systems

    Get PDF
    This paper presents an overview of some hierarchical control schemes composed by a high level Model Predictive Control (MPC) and a low level Sliding Mode Control (SMC). The latter is realized by using the so-called Integral Sliding Mode (ISM) control approach and is meant to reject the matched disturbances affecting the plant, thus providing a system with reduced uncertainty for the MPC design. Both continuous and discrete-time solutions are discussed in the paper. Moreover, assuming the presence of a network in the control loop, a networked version of the control scheme is presented. It is a model-based event-triggered MPC/ISM control scheme aimed at minimizing the packets transmission. The input-to-state (practical) stability properties of the proposed approaches are also addressed in the paper

    Scalable model for industrial coffee roasting chamber

    Get PDF
    Abstract The temperature profile of the coffee beans during the roasting phase determines the colour, aroma and flavour of the coffee. In order to reproduce these desired characteristics, the control of the coffee beans temperature has a key role in the roasting process. A proper model of the plant is required to design an intelligent control. Recently, several physical models that share the main physical equations have been proposed, but they have physical parameters specific of each process. In such scenario, each plant requires an ad hoc identification of the model parameters. This work proposes a model of the roasting chamber that can be used on plants of different sizes by scaling only geometrical parameters directly measurable on the roasting plant. The proposed model was identified on a 120 kg plant and then applied to a 360 kg one. The obtained results show in both cases similar accuracy (FIT = 75.49%, MPE=4.66%)
    • …
    corecore